Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Int J Oral Maxillofac Implants ; 0(0): 1-32, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38657133

ABSTRACT

PURPOSE: The formation of a biological seal between implant abutments and the surrounding soft tissue is a preventive strategy against peri-implantitis. The aim of this study is to test the hypothesis that surfaces of prosthetic implant abutments treated with vacuum ultraviolet (VUV) light enhance the growth and function of human gingival fibroblasts. MATERIALS AND METHODS: Implant abutments were treated with 172 nm VUV light for one minute. Untreated abutments were subjected as controls. Their surface properties were characterized using SEM, contact angle measurements, and chemical composition analysis. Human gingival fibroblasts were cultured on both untreated and VUV-treated abutments to evaluate cell attachment, proliferation, distribution, and collagen production. Cell detachment assays were also performed under various mechanical and chemical stimuli. RESULTS: After VUV treatment, implant abutments demonstrated a notable transition from hydrophobic to hydrophilic wettability. Surface element analysis revealed a considerable reduction in surface carbon and increases in oxygen and titanium elements on the VUV-treated surfaces. On day 1 of culture, 3.9 times more fibroblasts attached on VUV-treated abutments than on untreated control abutments. Fibroblastic proliferation increased 1.9-3.1 times on VUV-treated abutments, along with a significant improvement in the distribution of populating cells. Collagen production on VUV-treated abutments increased by 1.5-1.7 times. While untreated abutment surfaces showed voids and limited spread of collagen deposition, dense and full coverage of collagen was observed on VUV-treated abutments, with a great contrast in the challenging axial surface zone. Cell retention against mechanical and chemical detaching stimuli was increased 11.3 and 4.3 times, respectively, by VUV treatment. CONCLUSION: Treatment of implant abutments with VUV light for one minute resulted in a reduction of surface carbon and a transformation of the surface from hydrophobic to hydrophilic. This led to enhanced attachment, proliferation, and retention of human gingival fibroblasts, along with nearly complete collagen coverage on implant abutments. These in vitro results indicate the promising potential of utilizing VUV photofunctionalized implant abutments to enhance soft tissue reaction and sealing mechanisms.

2.
Bioengineering (Basel) ; 11(2)2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38391604

ABSTRACT

Peri-implant diseases, such as peri-implant mucositis and peri-implantitis, are induced by dysbiotic microbiota resulting in the inflammatory destruction of peri-implant tissue. Nonetheless, there has yet to be an established protocol for the treatment of these diseases in a predictable manner, although many clinicians and researchers have proposed various treatment modalities for their management. With the increase in the number of reports evaluating the efficacy of various treatment modalities and new materials, the use of multiple decontamination methods to clean infected implant surfaces is recommended; moreover, the use of hard tissue laser and/or air abrasion techniques may prove advantageous in the future. Limited evidence supports additional effects on clinical improvement in antimicrobial administration for treating peri-implantitis. Implantoplasty may be justified for decontaminating the implant surfaces in the supracrestal area. Surgical treatment is employed for advanced peri-implantitis, and appropriate surgical methods, such as resection therapy or combination therapy, should be selected based on bone defect configuration. This review presents recent clinical advances in debridement methods for contaminated implant surfaces and regenerative materials for treating peri-implant bone defects. It also proposes a new flowchart to guide the treatment decisions for peri-implant disease.

3.
Article in English | MEDLINE | ID: mdl-38358908

ABSTRACT

PURPOSE: Laser-created titanium surface topographies enhance soft tissue attachment and implant stability. However, knowledge about the underlying mechanisms governing the tissue-level reaction is lacking. The objective of this study was to examine the behavior and function of human gingival fibroblasts growing on healing abutments with or without laser-textured topography. MATERIALS AND METHODS: Human primary gingival connective tissue fibroblasts were cultured on healing abutments with machined or laser-textured (Laser-Lok, BioHorizons) surfaces. Cellular and molecular responses were evaluated by cell density assay (WST-1), fluorescence microscopy, qRT-PCR, and detachment test. RESULTS: The machined surface showed mono-directional traces and scratches from milling, whereas the laser-textured surface showed a distinct morphology consisting of mono-directional meso-scale channels (15 µm pitch) and woven, oblique micro-ridges formed within the channel. There were no differences in initial fibroblast attachment, subsequent fibroblast proliferation, nor collagen production between the machined and laser-textured surfaces. Fibroblasts growing on laser-textured surface spread mono-directionally along the meso-channels, while cells growing on machined surfaces spread randomly. Fibroblasts on laser-textured surfaces were 1.8-times more resistant to detachment than those on machined surfaces. An adhesive glycoprotein (fibronectin) and trans-membrane adhesion linker gene (integrin beta-1) were upregulated on laser-textured surfaces. CONCLUSIONS: The increased fibroblast retention, uniform growth, increased transcription of cell adhesion proteins compellingly explain the enhanced tissue-level response to laser-created, hybrid textured titanium surfaces. These results provide a cellular and molecular rationale for the tissue reaction to this unique surface and support its extended use from implant fixtures and healing abutments to diverse prosthetic components where enhanced soft tissue responses would be desirable.

4.
Mater Today Bio ; 23: 100852, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38024842

ABSTRACT

This is the first genome-wide transcriptional profiling study using RNA-sequencing to investigate osteoblast responses to different titanium surface topographies, specifically between machined, smooth and acid-etched, microrough surfaces. Rat femoral osteoblasts were cultured on machine-smooth and acid-etched microrough titanium disks. The culture system was validated through a series of assays confirming reduced osteoblast attachment, slower proliferation, and faster differentiation on microrough surfaces. RNA-sequencing analysis of osteoblasts at an early stage of culture revealed that gene expression was highly correlated (r = 0.975) between the two topographies, but 1.38 % genes were upregulated and 0.37 % were downregulated on microrough surfaces. Upregulated transcripts were enriched for immune system, plasma membrane, response to external stimulus, and positive regulation to stimulus processes. Structural mapping confirmed microrough surface-promoted gene sharing and networking in signaling pathways and immune system/responses. Target-specific pathway analysis revealed that Rho family G-protein signaling pathways and actin genes, responsible for the formation of stress fibers, cytoplasmic projections, and focal adhesion, were upregulated on microrough surfaces without upregulation of core genes triggered by cell-to-cell interactions. Furthermore, disulfide-linked or -targeted extracellular matrix (ECM) or membranous glycoproteins such as laminin, fibronectin, CD36, and thrombospondin were highly expressed on microrough surfaces. Finally, proliferating cell nuclear antigen (PCNA) and cyclin D1, whose co-expression reduces cell proliferation, were upregulated on microrough surfaces. Thus, osteoblasts on microrough surfaces were characterized by upregulation of genes related to a wide range of functions associated with the immune system, stress/stimulus responses, proliferation control, skeletal and cytoplasmic signaling, ECM-integrin receptor interactions, and ECM-membranous glycoprotein interactions, furthering our knowledge of the surface-dependent expression of osteoblastic biomarkers on titanium.

5.
Cells ; 12(21)2023 10 29.
Article in English | MEDLINE | ID: mdl-37947620

ABSTRACT

Soft tissue adhesion and sealing around dental and maxillofacial implants, related prosthetic components, and crowns are a clinical imperative to prevent adverse outcomes of periodontitis and periimplantitis. Zirconia is often used to fabricate implant components and crowns. Here, we hypothesized that UV treatment of zirconia would induce unique behaviors in fibroblasts that favor the establishment of a soft tissue seal. Human oral fibroblasts were cultured on zirconia specimens to confluency before placing a second zirconia specimen (either untreated or treated with one minute of 172 nm vacuum UV (VUV) light) next to the first specimen separated by a gap of 150 µm. After seven days of culture, fibroblasts only transmigrated onto VUV-treated zirconia, forming a 2.36 mm volume zone and 5.30 mm leading edge. Cells migrating on VUV-treated zirconia were enlarged, with robust formation of multidirectional cytoplastic projections, even on day seven. Fibroblasts were also cultured on horizontally placed and 45° and 60° tilted zirconia specimens, with the latter configurations compromising initial attachment and proliferation. However, VUV treatment of zirconia mitigated the negative impact of tilting, with higher tilt angles increasing the difference in cellular behavior between control and VUV-treated specimens. Fibroblast size, perimeter, and diameter on day seven were greater than on day one exclusively on VUV-treated zirconia. VUV treatment reduced surface elemental carbon and induced superhydrophilicity, confirming the removal of the hydrocarbon pellicle. Similar effects of VUV treatment were observed on glazed zirconia specimens with silica surfaces. One-minute VUV photofunctionalization of zirconia and silica therefore promotes human oral fibroblast attachment and proliferation, especially under challenging culture conditions, and induces specimen-to-specimen transmigration and sustainable photofunctionalization for at least seven days.


Subject(s)
Fibroblasts , Silicon Dioxide , Humans , Surface Properties , Vacuum
6.
Int J Mol Sci ; 24(19)2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37834133

ABSTRACT

Hydrophilicity/hydrophobicity-or wettability-is a key surface characterization metric for titanium used in dental and orthopedic implants. However, the effects of hydrophilicity/hydrophobicity on biological capability remain uncertain, and the relationships between surface wettability and other surface parameters, such as topography and chemistry, are poorly understood. The objective of this study was to identify determinants of surface wettability of titanium and establish the reliability and validity of the assessment. Wettability was evaluated as the contact angle of ddH2O. The age of titanium specimens significantly affected the contact angle, with acid-etched, microrough titanium surfaces becoming superhydrophilic immediately after surface processing, hydrophobic after 7 days, and hydrorepellent after 90 days. Similar age-related loss of hydrophilicity was also confirmed on sandblasted supra-micron rough surfaces so, regardless of surface topography, titanium surfaces eventually become hydrophobic or hydrorepellent with time. On age-standardized titanium, surface roughness increased the contact angle and hydrophobicity. UV treatment of titanium regenerated the superhydrophilicity regardless of age or surface roughness, with rougher surfaces becoming more superhydrophilic than machined surfaces after UV treatment. Conditioning titanium surfaces by autoclaving increased the hydrophobicity of already-hydrophobic surfaces, whereas conditioning with 70% alcohol and hydrating with water or saline attenuated pre-existing hydrophobicity. Conversely, when titanium surfaces were superhydrophilic like UV-treated ones, autoclaving and alcohol cleaning turned the surfaces hydrorepellent and hydrophobic, respectively. UV treatment recovered hydrophilicity without exception. In conclusion, surface roughness accentuates existing wettability and can either increase or decrease the contact angle. Titanium must be age-standardized when evaluating surface wettability. Surface conditioning techniques significantly but unpredictably affect existing wettability. These implied that titanium wettability is significantly influenced by the hydrocarbon pellicle and other contaminants inevitably accumulated. UV treatment may be an effective strategy to standardize wettability by making all titanium surfaces superhydrophilic, thereby allowing the characterization of individual surface topography and chemistry parameters in future studies.


Subject(s)
Dental Implants , Titanium , Wettability , Titanium/chemistry , Surface Properties , Reproducibility of Results , Hydrophobic and Hydrophilic Interactions , Microscopy, Electron, Scanning
7.
Photobiomodul Photomed Laser Surg ; 41(10): 549-559, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37788456

ABSTRACT

Objective: This study investigated the suppressive effects of blue light-emitting diode (LED) irradiation on bone resorption and changes in the oral microbiome of mice with ligature-induced periodontitis. Background: Wavelength of blue light has antimicrobial effects; however, whether blue LED irradiation alone inhibits the progression of periodontitis remains unclear. Methods: Nine-week-old male mice ligated ligature around the right maxillary second molar was divided into ligation alone (Li) and ligation with blue LED irradiation (LiBL) groups. The LiBL group underwent blue LED (wavelength, 455 nm) irradiation four times in a week at 150 mW/cm2 without a photosensitizer on the gingival tissue around the ligated tooth at a distance of 5 mm for 5 min. The total energy density per day was 45 J/cm2. Bone resorption was evaluated using micro-computed tomography at 8 days. Differences in the oral microbiome composition of the collected ligatures between the Li and LiBL groups were analyzed using next-generation sequencing based on the 16S rRNA gene from the ligatures. Results: Blue LED irradiation did not suppress bone resorption caused by ligature-induced periodontitis. However, in the LiBL group, the α-diversity, number of observed features, and Chao1 were significantly decreased. The relative abundances in phylum Myxococcota and Bacteroidota were underrepresented, and the genera Staphylococcus, Lactococcus, and Lactobacillus were significantly overrepresented by blue LED exposure. Metagenomic function prediction indicated an increase in the downregulated pathways related to microbial energy metabolism after irradiation. The co-occurrence network was altered to a simpler structure in the LiBL group, and the number of core genera decreased. Conclusions: Blue LED irradiation altered the composition and network of the oral microbiome of ligature-induced periodontitis in mice.


Subject(s)
Alveolar Bone Loss , Microbiota , Periodontitis , Mice , Male , Animals , Photosensitizing Agents/pharmacology , X-Ray Microtomography/adverse effects , RNA, Ribosomal, 16S , Alveolar Bone Loss/etiology , Alveolar Bone Loss/metabolism , Periodontitis/therapy , Periodontitis/complications , Periodontitis/metabolism
8.
Ther Adv Chronic Dis ; 14: 20406223231174816, 2023.
Article in English | MEDLINE | ID: mdl-37324409

ABSTRACT

The optimal method for decontamination of implant surfaces for peri-implantitis treatment remains controversial. In recent years, erbium-doped yttrium aluminum garnet (Er:YAG) laser irradiation and implantoplasty (IP) (i.e. mechanical modification of the implant) have been reported to be effective in decontaminating implant surfaces during the surgical treatment. Also, a lack of adequate keratinized mucosa (KM) around the implant is known to be associated with more plaque accumulation, tissue inflammation, attachment loss, and mucosal recession, increasing the risk of peri-implantitis. Therefore, free gingival graft (FGG) has been recommended for gaining adequate KM around the implant. However, the necessity of acquiring KM for the treatment of peri-implantitis using FGG remains unclear. In this report, we applied the apically positioned flap (APF) as resective surgery for peri-implantitis treatment in conjunction with IP and Er:YAG laser irradiation to polish/clean the implant surface. Furthermore, FGG was conducted simultaneously to create additional KM, which increased the tissue stability and contributed to the positive results. The two patients were 64 and 63 years old with a history of periodontitis. The removal of granulation tissue and debridement of contaminated implant surfaces were performed with Er:YAG laser irradiation post flap elevation and then modified smooth surfaces mechanically using IP. Er:YAG laser irradiation was also utilized to remove the titanium particles. In addition, we performed FGG to increase the width of KM as a vestibuloplasty. Peri-implant tissue inflammation and progressive bone resorption were not observed, and both patients maintained good oral hygiene conditions until the 1-year follow-up appointment. Bacterial analysis via high-throughput sequencing revealed proportional decreases in bacteria associated with periodontitis (Porphyromonas, Treponema, and Fusobacterium). To the best of our knowledge, this study is the first to describe peri-implantitis management and bacterial change before and after procedures by resective surgery combined with IP and Er:YAG laser irradiation for peri-implantitis treatment, accompanied by FGG for increasing KM around the implants.

9.
JACC Case Rep ; 11: 101793, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-37077438

ABSTRACT

We present 2 cases that both developed infective endocarditis and underwent mitral valve replacement. In addition to positive blood culture and echocardiographic findings, such as vegetation or mitral valve perforation, the 16S ribosomal RNA gene amplicon sequence approach used was helpful for disease diagnosis. (Level of Difficulty: Intermediate.).

10.
J Funct Biomater ; 14(3)2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36976043

ABSTRACT

Light-cured composite resins are widely used in dental restorations to fill cavities and fabricate temporary crowns. After curing, the residual monomer is a known to be cytotoxic, but increasing the curing time should improve biocompatibility. However, a biologically optimized cure time has not been determined through systematic experimentation. The objective of this study was to examine the behavior and function of human gingival fibroblasts cultured with flowable and bulk-fill composites cured for different periods of time, while considering the physical location of the cells with regard to the materials. Biological effects were separately evaluated for cells in direct contact with, and in close proximity to, the two composite materials. Curing time varied from the recommended 20 s to 40, 60, and 80 s. Pre-cured, milled-acrylic resin was used as a control. No cell survived and attached to or around the flowable composite, regardless of curing time. Some cells survived and attached close to (but not on) the bulk-fill composite, with survival increasing with a longer curing time, albeit to <20% of the numbers growing on milled acrylic even after 80 s of curing. A few cells (<5% of milled acrylic) survived and attached around the flowable composite after removal of the surface layer, but attachment was not cure-time dependent. Removing the surface layer increased cell survival and attachment around the bulk-fill composite after a 20-s cure, but survival was reduced after an 80-s cure. Dental-composite materials are lethal to contacting fibroblasts, regardless of curing time. However, longer curing times mitigated material cytotoxicity exclusively for bulk-fill composites when the cells were not in direct contact. Removing the surface layer slightly improved biocompatibility for cells in proximity to the materials, but not in proportion to cure time. In conclusion, mitigating the cytotoxicity of composite materials by increasing cure time is conditional on the physical location of cells, the type of material, and the finish of the surface layer. This study provides valuable information for clinical decision making and novel insights into the polymerization behavior of composite materials.

11.
Int J Mol Sci ; 24(3)2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36768297

ABSTRACT

Titanium undergoes biological aging, represented by increased hydrophobicity and surface accumulation of organic molecules over time, which compromises the osseointegration of dental and orthopedic implants. Here, we evaluated the efficacy of a novel UV light source, 172 nm wavelength vacuum UV (VUV), in decomposing organic molecules around titanium. Methylene blue solution used as a model organic molecule placed in a quartz ampoule with and without titanium specimens was treated with four different UV light sources: (i) ultraviolet C (UVC), (ii) high-energy UVC (HUVC), (iii) proprietary UV (PUV), and (iv) VUV. After one minute of treatment, VUV decomposed over 90% of methylene blue, while there was 3-, 3-, and 8-fold more methylene blue after the HUVC, PUV, and UVC treatments, respectively. In dose-dependency experiments, maximal methylene blue decomposition occurred after one minute of VUV treatment and after 20-30 min of UVC treatment. Rapid and effective VUV-mediated organic decomposition was not influenced by the surface topography of titanium or its alloy and even occurred in the absence of titanium, indicating only a minimal photocatalytic contribution of titanium dioxide to organic decomposition. VUV-mediated but not other light source-mediated methylene blue decomposition was proportional to its concentration. Plastic tubes significantly reduced methylene blue decomposition for all light sources. These results suggest that VUV, in synergy with quartz ampoules, mediates rapid and effective organic decomposition compared with other UV sources. This proof-of-concept study paves the way for rapid and effective VUV-powered photofunctionalization of titanium to overcome biological aging.


Subject(s)
Titanium , Ultraviolet Rays , Vacuum , Methylene Blue , Quartz , Surface Properties
12.
J Prosthodont Res ; 67(2): 288-299, 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-35858802

ABSTRACT

PURPOSE: A novel implant model consisting of meso-scale cactus-inspired spikes and nano-scale bone-inspired trabeculae was recently developed to optimize meso-scale roughness on zirconia. In this model, the meso-spike dimension had a significant impact on osteoblast function. To explore how different nano-textures impact this model, here we examined the effect of different nano-trabecula sizes on osteoblast function while maintaining the same meso-spike conformation. METHODS: Zirconia disks with meso-nano hybrid surfaces were created by laser etching. The meso-spikes were fixed to 40 µm high, whereas the nano-texture was etched as large and small trabeculae of average Feret diameter 237.0 and 134.1 nm, respectively. A polished surface was also prepared. Rat bone marrow-derived and human mesenchymal stromal cell-induced osteoblasts were cultured on these disks. RESULTS: Hybrid rough surfaces, regardless of nano-trabecula dimension, robustly promoted the osteoblastic differentiation of both rat and human osteoblasts compared to those on polished surfaces. Hybrid surfaces with small nano-trabeculae further enhanced osteoblastic differentiation compared with large nano-trabeculae. However, the difference in osteoblastic differentiation between small and large nano-trabeculae was much smaller than the difference between the polished and hybrid rough surfaces. The nano-trabecula size did not influence osteoblast attachment and proliferation, or protein adsorption. Both hybrid surfaces were hydro-repellent. The atomic percentage of surface carbon was lower on the hybrid surface with small nano-trabeculae. CONCLUSIONS: Small nano-trabeculae promoted osteoblastic differentiation more than large nano-trabeculae when combined with meso-scale spikes. However, the biological impact of different nano-trabeculae was relatively small compared with that of different dimensions of meso-spikes.


Subject(s)
Biomimetics , Osseointegration , Rats , Humans , Animals , Surface Properties , Zirconium , Cell Differentiation , Titanium , Cells, Cultured
13.
Int J Mol Sci ; 25(1)2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38203293

ABSTRACT

The development of healthy peri-implant soft tissues is critical to achieving the esthetic and biological success of implant restorations throughout all stages of healing and tissue maturation, starting with provisionalization. The purpose of this study was to investigate the effects of eight different implant provisional materials on human gingival fibroblasts at various stages of cell settlement by examining initial cell attachment, growth, and function. Eight different specimens-bis-acrylic 1 and 2, flowable and bulk-fill composites, self-curing acrylic 1 and 2, milled acrylic, and titanium (Ti) alloy as a control-were fabricated in rectangular plates (n = 3). The condition of human gingival fibroblasts was divided into two groups: those in direct contact with test materials (contact experiment) and those in close proximity to test materials (proximity experiment). The proximity experiment was further divided into three phases: pre-settlement, early settlement, and late settlement. A cell culture insert containing each test plate was placed into a well where the cells were pre-cultured. The number of attached cells, cell proliferation, resistance to detachment, and collagen production were evaluated. In the contact experiment, bis-acrylics and composites showed detrimental effects on cells. The number of cells attached to milled acrylic and self-curing acrylic was relatively high, being approximately 70% and 20-30%, respectively, of that on Ti alloy. There was a significant difference between self-curing acrylic 1 and 2, even with the same curing modality. The cell retention ability also varied considerably among the materials. Although the detrimental effects were mitigated in the proximity experiment compared to the contact experiment, adverse effects on cell growth and collagen production remained significant during all phases of cell settlement for bis-acrylics and flowable composite. Specifically, the early settlement phase was not sufficient to significantly mitigate the material cytotoxicity. The flowable composite was consistently more cytotoxic than the bulk-fill composite. The harmful effects of the provisional materials on gingival fibroblasts vary considerably depending on the curing modality and compositions. Pre-settlement of cells mitigated the harmful effects, implying the susceptibility to material toxicity varies depending on the progress of wound healing and tissue condition. However, cell pre-settlement was not sufficient to fully restore the fibroblastic function to the normal level. Particularly, the adverse effects of bis-acrylics and flowable composite remained significant. Milled and self-curing acrylic exhibited excellent and acceptable biocompatibility, respectively, compared to other materials.


Subject(s)
Dental Materials , Drug-Related Side Effects and Adverse Reactions , Humans , Research Design , Alloys , Fibroblasts , Collagen
14.
Cells ; 11(24)2022 12 10.
Article in English | MEDLINE | ID: mdl-36552761

ABSTRACT

Bone cement containing benzoyl peroxide (BPO) as a polymerization initiator are commonly used to fix orthopedic metal implants. However, toxic complications caused by bone cement are a clinically significant problem. Poly (methyl methacrylate) tri-n-butylborane (PMMA-TBB), a newly developed material containing TBB as a polymerization initiator, was found to be more biocompatible than conventional PMMA-BPO bone cements due to reduced free radical generation during polymerization. However, free radicals might not be the only determinant of cytotoxicity. Here, we evaluated the response and functional phenotypes of cells exposed to extracts derived from different bone cements. Bone cement extracts were prepared from two commercial PMMA-BPO cements and an experimental PMMA-TBB. Rat bone marrow-derived osteoblasts and osteoclasts were cultured in a medium supplemented with bone cement extracts. More osteoblasts survived and attached to the culture dish with PMMA-TBB extract than in the culture with PMMA-BPO extracts. Osteoblast proliferation and differentiation were higher in the culture with PMMA-TBB extract. The number of TRAP-positive multinucleated cells was significantly lower in the culture with PMMA-TBB extract. There was no difference in osteoclast-related gene expression in response to different bone cement extracts. In conclusion, PMMA-TBB extract was less toxic to osteoblasts than PMMA-BPO extracts. Although extracts from the different cement types did not affect osteoclast function, PMMA-TBB extract seemed to reduce osteoclastogenesis, a possible further advantage of PMMA-TBB cement. These implied that the reduced radical generation during polymerization is not the only determinant for the improved biocompatibility of PMMA-TBB and that the post-polymerization chemical elution may also be important.


Subject(s)
Bone Cements , Polymethyl Methacrylate , Rats , Animals , Polymethyl Methacrylate/pharmacology , Polymethyl Methacrylate/metabolism , Bone Cements/pharmacology , Bone Cements/metabolism , Osteoclasts/metabolism , Materials Testing , Osteoblasts/metabolism
15.
Int J Mol Sci ; 23(24)2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36555541

ABSTRACT

The fibroblast-rich gingival tissue is usually in contact with or adjacent to cytotoxic polymer-based dental restoration materials. The objective of this study was to determine whether the antioxidant amino acid, N-acetyl cysteine (NAC), reduces the toxicity of dental restorative materials. Human oral fibroblasts were cultured with bis-acrylic, flowable composite, bulk-fill composite, self-curing acrylic, and titanium alloy test specimens. Cellular behavior and function were analyzed on and around the materials. Impregnation of the bulk-fill composite and self-curing acrylic with NAC reduced their toxicity, improving the attachment, growth, and function of human oral fibroblasts on and around the materials. These mitigating effects were NAC dose dependent. However, NAC impregnation of the bis-acrylic and flowable composite was ineffective, with no cells attaching to nor around the materials. Although supplementing the culture medium with NAC also effectively improved fibroblast behaviors, direct impregnation of materials with NAC was more effective than supplementing the cultures. NAC-mediated improvements in fibroblast behavior were associated with reduced production of reactive oxygen species and oxidized glutathione together with increased glutathione reserves, indicating that NAC effectively directly scavenged ROS from materials and reinforced the cellular antioxidant defense system. These results establish a proof of concept of NAC-mediated improvements in biocompatibility in the selected dental restorative materials.


Subject(s)
Acetylcysteine , Antioxidants , Humans , Acetylcysteine/metabolism , Antioxidants/pharmacology , Glutathione/metabolism , Gingiva/metabolism , Polymers , Composite Resins/pharmacology , Materials Testing , Dental Materials/pharmacology
16.
Biomimetics (Basel) ; 7(4)2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36546943

ABSTRACT

Implant provisional restorations should ideally be nontoxic to the contacting and adjacent tissues, create anatomical and biophysiological stability, and establish a soft tissue seal through interactions between prosthesis, soft tissue, and alveolar bone. However, there is a lack of robust, systematic, and fundamental data to inform clinical decision making. Here we systematically explored the biocompatibility of fibroblasts and osteoblasts in direct contact with, or close proximity to, provisional restoration materials. Human gingival fibroblasts and osteoblasts were cultured on the "contact" effect and around the "proximity" effect with various provisional materials: bis-acrylic, composite, self-curing acrylic, and milled acrylic, with titanium alloy as a bioinert control. The number of fibroblasts and osteoblasts surviving and attaching to and around the materials varied considerably depending on the material, with milled acrylic the most biocompatible and similar to titanium alloy, followed by self-curing acrylic and little to no attachment on or around bis-acrylic and composite materials. Milled and self-curing acrylics similarly favored subsequent cellular proliferation and physiological functions such as collagen production in fibroblasts and alkaline phosphatase activity in osteoblasts. Neither fibroblasts nor osteoblasts showed a functional phenotype when cultured with bis-acrylic or composite. By calculating a biocompatibility index for each material, we established that fibroblasts were more resistant to the cytotoxicity induced by most materials in direct contact, however, the osteoblasts were more resistant when the materials were in close proximity. In conclusion, there was a wide variation in the cytotoxicity of implant provisional restoration materials ranging from lethal and tolerant to near inert, and this cytotoxicity may be received differently between the different cell types and depending on their physical interrelationships.

17.
ACS Omega ; 7(35): 30768-30772, 2022 Sep 06.
Article in English | MEDLINE | ID: mdl-36092607

ABSTRACT

Ceramic architectures based on chemical vapor deposition (CVD) are used to create unique crystal structures, morphologies, and properties. This study proposed room-temperature THz gas sensing using terahertz time-domain spectroscopy (THz-TDS) with ceramic architectures. We synthesized ceramic films on porous glass. Zinc oxide films were created using atmospheric CVD and amorphous carbon nitride films using the dissociative excitation reaction of BrCN with metastable Ar atoms. The transmission method was used in THz-TDS. A stainless hand-made gas cell with a Si window was applied for THz gas sensing. We defined "phase delay" equals VOC sensing response amount of sensing materials at each duration. Ppm-order THz gas sensing was performed.

18.
J Clin Periodontol ; 49(12): 1275-1288, 2022 12.
Article in English | MEDLINE | ID: mdl-35817415

ABSTRACT

AIM: The purpose of this study was to elucidate the suppressive effect of high-frequency pulsed diode laser irradiation on bone resorption and its biological effects on gene expression and microbiome composition on the gingival tissue in ligature-induced periodontitis in mice. MATERIALS AND METHODS: Ligating ligature around the teeth and/or laser irradiation was performed on the gingival tissue in mice as follows: Co (no ligature and no laser irradiation), Li (ligation without laser irradiation), La (no ligature but with laser irradiation), and LiLa (ligation with laser irradiation). Bone resorption was evaluated using micro-computed tomography. RNA-seq analysis was performed on gingival tissues of all four groups at 3 days after ligation. The differences in microbial composition between Li and LiLa were evaluated based on the number of 16S rRNA gene sequences. RESULTS: Bone resorption caused by ligation was significantly suppressed by laser irradiation. RNA-seq in Co and La gingival tissue revealed many differentially expressed genes, suggesting diode laser irradiation altered gene expression. Gene set enrichment analysis revealed mTORC1 signalling and E2F target gene sets were enriched in gingival tissues both in La and LiLa compared with that in Co and Li, respectively. The amount of extracted DNA from ligatures was reduced by laser irradiation, and bacterial network structure was altered between the Li and LiLa. CONCLUSIONS: High-frequency pulsed diode laser irradiation showed biological effects and suppressed bone resorption in ligature-induced periodontitis.


Subject(s)
Alveolar Bone Loss , Bone Resorption , Periodontitis , Mice , Animals , Alveolar Bone Loss/etiology , Lasers, Semiconductor/therapeutic use , RNA, Ribosomal, 16S , X-Ray Microtomography/adverse effects , Periodontitis/complications , Disease Models, Animal
20.
Article in English | MEDLINE | ID: mdl-35060974

ABSTRACT

The number of complications related to dental implants has been increasing, as implant therapy has grown to become the most popular treatment choice for replacing missing teeth. Various cases of implant complications have been reported, particularly biologic complications caused by inadequate surgical techniques, including malpositioned implants, that are difficult to solve. In the present case, two malpositioned implants with peri-implantitis were placed in the maxillary right first molar area of a 64-year-old woman. To treat the peri-implant infection and facilitate self-plaque control, one malpositioned implant was removed, and the other was treated with open flap debridement using an erbium-doped yttrium aluminum garnet (Er:YAG) laser. The implant suprastructure was then changed adequately to recover oral function. This case report demonstrates the clinical steps, healing process, and 6-month follow-up of peri-implantitis caused by malpositioned implants.


Subject(s)
Dental Implants , Lasers, Solid-State , Peri-Implantitis , Tooth Loss , Dental Implants/adverse effects , Female , Humans , Middle Aged , Peri-Implantitis/diagnostic imaging , Peri-Implantitis/etiology , Peri-Implantitis/surgery
SELECTION OF CITATIONS
SEARCH DETAIL
...